IoT-Based Remote Electricity Control and Management Monitoring System Using Blynk Application

Penulis

  • Andreanata Pradifta Muksin Universitas Esa Unggul Penulis
  • Budi Tjahjono Universitas Esa Unggul Penulis

DOI:

https://doi.org/10.53905/Gimer.v1i02.11

Kata Kunci:

IoT, electricity control, remote monitoring, energy management, Blynk, NodeMCU ESP32, PZEM-004T, smart home, power monitoring

Abstrak

Purpose of the study: This research seeks to create an IoT-based system for remote electricity control and monitoring, ensuring precise, real-time energy management through a user-friendly interface. The study emphasizes the design of a cohesive hardware-software system utilizing NodeMCU ESP32, PZEM-004T sensors, relay modules, and the Blynk application, while evaluating performance concerning response time, accuracy, stability, and reliability in domestic settings.

Materials and methods: An experimental methodology was adopted, encompassing needs analysis, design, development, implementation, and evaluation phases. The system employs NodeMCU ESP32 as the principal microcontroller, relay modules as electronic switches, PZEM-004T sensors for monitoring electricity usage, and an LCD for information display. It interfaces with the Blynk application for remote control and monitoring, with testing conducted in a controlled household setting to assess response speed, accuracy, stability, and scheduling reliability.

Results: The system exhibited exceptional performance, achieving WiFi connectivity within 2 seconds and command execution in under 2 seconds. The PZEM-004T sensor attained over 98% accuracy for voltage, current, power, and energy parameters when compared to calibrated standards. The automatic scheduling feature functioned with a 100% success rate during thorough testing. Real-time data was transmitted every 5 seconds, providing prompt feedback through the Blynk interface and integrated LCD.

Conclusions: The IoT-based remote electricity control system presents an innovative solution for household energy management, realizing a 70% enhancement in electricity usage efficiency. It features rapid response times, high accuracy, dependable scheduling, and user-friendly interfaces, catering to users with diverse technical skills. Despite limitations like internet dependency and sensor constraints, it serves as an effective and cost-efficient solution for smart energy management in residential settings.

Referensi

Aghera, R., Chilana, S., Garg, V., & Reddy, R. (2021). A Deep Learning Technique using Low Sampling rate for residential Non Intrusive Load Monitoring. arXiv (Cornell University). https://doi.org/10.48550/arXiv.2111.05120

Ahdan, S., & Susanto, E. R. (2021). Implementasi dashboard smart energy untuk pengontrolan rumah pintar pada perangkat bergerak berbasis internet of things. Jurnal Teknoinfo, 15(1), 26. https://doi.org/10.33365/jti.v15i1.954

Ahmad, N., Yusof, I. S. M., & Abdullah, M. F. (2022). Economics and Environment Assessment of Smart Energy Electricity Meter for Residency Monitoring. International Journal of Academic Research in Economics and Management Sciences, 11(1). https://doi.org/10.6007/ijarems/v11-i1/11136

Ahmed, I., & Yeasir, Md. (2020). IoT based Energy Saving Strategies for Student Hall at University of Chittagong, Bangladesh. International Journal of Computer Applications, 177(46), 36. https://doi.org/10.5120/ijca2020919986

Bian, D., Kuzlu, M., Pipattanasomporn, M., Rahman, S., & Shi, D. (2019). Performance Evaluation of Communication Technologies and Network Structure for Smart Grid Applications. arXiv (Cornell University). https://doi.org/10.48550/arXiv.1901.11509

Chen, C., Liu, C.-Y., Kuo, C.-C., & Yang, C. (2017). Web-Based Remote Control of a Building’s Electrical Power, Green Power Generation and Environmental System Using a Distributive Microcontroller. Micromachines, 8(8), 241. https://doi.org/10.3390/mi8080241

Chen, S., Zhao, B., Zhong, M., Luan, W., & Yu, Y. (2023). Nonintrusive Load Monitoring Based on Self-Supervised Learning. IEEE Transactions on Instrumentation and Measurement, 72, 1. https://doi.org/10.1109/tim.2023.3246504

Chen, Z., Sivaparthipan, C. B., & Muthu, B. (2021). IoT based smart and intelligent smart city energy optimization. Sustainable Energy Technologies and Assessments, 49, 101724. https://doi.org/10.1016/j.seta.2021.101724

Cintuglu, M. H., Mohammed, O. A., Akkaya, K., & Uluagac, A. S. (2016). A Survey on Smart Grid Cyber-Physical System Testbeds. IEEE Communications Surveys & Tutorials, 19(1), 446. https://doi.org/10.1109/comst.2016.2627399

Dean, J. B., & Barroso, L. A. (2013). The tail at scale. Communications of the ACM, 56(2), 74. https://doi.org/10.1145/2408776.2408794

El‐Khozondar, H. J., Mtair, S. Y., Qoffa, K. O., Qasem, O. I., Munyarawi, A. H., Nassar, Y. F., Bayoumi, E. H. E., & Halim, A. A. E. B. A. E. (2024). A smart energy monitoring system using ESP32 microcontroller. E-Prime - Advances in Electrical Engineering Electronics and Energy, 9, 100666. https://doi.org/10.1016/j.prime.2024.100666

El‐Moursy, A. A., Sibai, F. N., Rehman, J., Gouda, O., Gaber, A. T., & Khedr, A. M. (2022). Home Automation Using Augmented Reality (HAAR). Wireless Personal Communications, 124(2), 1525. https://doi.org/10.1007/s11277-021-09419-7

Eridani, D., Widianto, E. D., & Yulianto, A. (2021). Analysis of Custom IoT Based Electricity Monitoring System. IOP Conference Series Materials Science and Engineering, 1071(1), 12024. https://doi.org/10.1088/1757-899x/1071/1/012024

Gacitúa, L., Gallegos, P., Henriquez-Auba, R., Lorca, Á., Negrete-Pincetic, M., Olivares, D., Valenzuela, A., & Wenzel, G. (2018). A comprehensive review on expansion planning: Models and tools for energy policy analysis [Review of A comprehensive review on expansion planning: Models and tools for energy policy analysis]. Renewable and Sustainable Energy Reviews, 98, 346. Elsevier BV. https://doi.org/10.1016/j.rser.2018.08.043

Gumilang, Y. S. A., Hadi, Mokh. S., & Lestari, D. (2022). Stopkontak Pintar Berbasis Internet of things sebagai Solusi Manajemen Energi Listrik dengan Menggunakan Aplikasi Android. JASIEK (Jurnal Aplikasi Sains Informasi Elektronika Dan Komputer), 4(2), 55. https://doi.org/10.26905/jasiek.v4i2.8332

Hayaty, M., & Mutmainah, A. R. (2019). IoT-Based electricity usage monitoring and controlling system using Wemos and Blynk application. Jurnal Teknologi Dan Sistem Komputer, 7(4), 161. https://doi.org/10.14710/jtsiskom.7.4.2019.161-165

Hermansyah, H., Rahmawati, N. A., & Achmad, A. (2023). Sistem Kendali Jarak Jauh Beban Listrik Rumah Tangga Berbasis Internet Of Things (IoT). Jambura Physics Journal, 5(1), 29. https://doi.org/10.34312/jpj.v5i1.19026

Joy, A., & Manivannan, D. (2016). Smart Energy Management and Scheduling using Internet of Things. Indian Journal of Science and Technology, 9(48). https://doi.org/10.17485/ijst/2016/v9i48/108001

Kango, R., Suhaedi, S., & Hasanuddin, F. A. (2021). Implementation of The Internet of Things for Monitoring The Company’s Electrical Power Consumption. Journal of Asian Multicultural Research for Economy and Management Study, 2(1), 16. https://doi.org/10.47616/jamrems.v2i1.72

Lasera, A. B., & Wahyudi, I. (2020). Pengembangan Prototipe Sistem Pengontrolan Daya Listrik berbasis IoT ESP32 pada Smart Home System. Elinvo (Electronics Informatics and Vocational Education), 5(2), 112. https://doi.org/10.21831/elinvo.v5i2.34261

Lu, J., & Jin, B. (2020). Super-Resolution Reconstruction of Interval Energy Data. 306. https://doi.org/10.1145/3408308.3431115

Morita, P. P., Sahu, K. S., & Oetomo, A. (2023). Health Monitoring Using Smart Home Technologies: Scoping Review. JMIR Mhealth and Uhealth, 11. https://doi.org/10.2196/37347

Pela, M. F., & Pramudita, R. (2021). Sistem Monitoring Penggunaan Daya Listrik Berbasis Internet Of Things Pada Rumah Dengan Menggunakan Aplikasi Blynk. Infotech Journal of Technology Information, 7(1), 47. https://doi.org/10.37365/jti.v7i1.106

Rossi, F., Gajani, G. S., Grillo, S., & Gruosso, G. (2025). Future Smart Grids Control and Optimization: A Reinforcement Learning Tool for Optimal Operation Planning. Energies, 18(10), 2513. https://doi.org/10.3390/en18102513

Sirisumrannukul, S., Intaraumnauy, T., & Piamvilai, N. (2024). Optimal control of cooling management system for energy conservation in smart home with ANNs-PSO data analytics microservice platform. Heliyon, 10(6). https://doi.org/10.1016/j.heliyon.2024.e26937

Taştan, M. (2019). Akıllı Ev Uygulamaları için Yeni Nesil IoT Denetleyici ile Gerçek Zamanlı Uzaktan İzleme ve Kontrol Uygulaması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(2), 481. https://doi.org/10.19113/sdufenbed.524110

Trisno, B., Budiman, R. A., Pratama, S., Riswana, R., Septiani, T., & Pramudita, R. (2024). Pemberdayaan Konservasi Energi: Memanfaatkan Potensi IoT dengan NodeMCU Amica dan PZEM-004T untuk Pemantauan dan Efisiensi Energi Cerdas. TELKA - Telekomunikasi Elektronika Komputasi Dan Kontrol, 10(2), 158. https://doi.org/10.15575/telka.v10n2.158-167

Visconti, P., Costantini, P., & Giorgio, C. (2015). Thermo-Solar Plant Managing and Monitoring b y Electronic Programmable Device with Touch-Screen Interface and Local or Remote Control Possibility. International Journal of Engineering Research And, 4. https://doi.org/10.17577/ijertv4is041041

Weerawan, N., Suriyawong, P., Samae, H., Sampattagul, S., & Phairuang, W. (2025). Optimizing Residential Energy Usage with Smart Devices: A Case Study on Energy Efficiency and Environmental Sustainability. Sustainability, 17(14), 6359. https://doi.org/10.3390/su17146359

Ye, X., Zhang, Z., & Qiu, Y. (2023). Review of application of high frequency smart meter data in energy economics and policy research. Frontiers in Sustainable Energy Policy, 2. https://doi.org/10.3389/fsuep.2023.1171093

Zlatev, Z., Todorov, A., Karadzhova, D., Vasilev, M., & Veleva, P. (2024). Evaluating the Performance and Practicality of a Multi-Parameter Assessment System with Design, Comparative Analysis, and Future Directions. Sustainability, 16(10), 4124. https://doi.org/10.3390/su16104124

Diterbitkan

2025-06-27

Cara Mengutip

Muksin, A. P., & Tjahjono, B. (2025). IoT-Based Remote Electricity Control and Management Monitoring System Using Blynk Application. Global Insights in Management and Economic Research, 1(02), 65-70. https://doi.org/10.53905/Gimer.v1i02.11